

	11.2 S	ensitivity				28	YTE:
	11.2.1	Point Source	Measure	ement			
		²² Na point source					
a de		Table 11.3: Sensitiv	vity values [cps	s/kBq] for poin Front Lover	nt source meas	Book Lover	
State 1		250.650	70.7	30.9	91.7	10.4	
		300-650	57.7	24.3	26.4	7.3	
		350-650	46.5	18.8	21.5	6.3	
State (400-650	37.9	14.9	17.6	5.3	
		450-650	29.6	11.5	13.9	4.3	
	■ 350)-650keVのエネル:	ギーウィント	・ウではsen	sitivity \$4.	7%であった	τ.

	2 3 3 2	200	- VASTES
11.2.2 Line	e Source Measure	ement	$\varepsilon = \frac{\text{unshielded trues count rate}}{\text{activity within FOV}}$
6.1 + 4.595 (m ⁻¹ 6.2 + 4.534 (m ⁻¹ 6.2 + 4.534 (m ⁻¹ 6.2 + 4.596 (m ⁻¹	140 140 141 141 141 141 141 141 141 141 141 141		$\mathcal{E}_{\text{VEMA}} = \frac{\text{unshielded trues count rate}}{\text{activity within line source}}$
9 60	- 300 - 450 harV - 4 12		$N = N_0 B(x, E_{\gamma}) e^{-\mu(x)x}$
63 63	400-650 MeV 2 110		Buildup factor
end control of the control of the control control of the control		1)==]	N : attenuation including scatter N_0 : broad beam attenuation
Figure 11.6: (a) Sensitivity meas gives the sensitivity of an unshie Table 11.4: Sensitivity val Energy Window [keV] (2020) 250.650 9.60 300.650 8.21 250.650 9.60 400.650 5.79 450.650 4.73	(r) surement with shielded line source. (b) Buildup factors for th lnes [cps/kBa] for line source measure c c both layers front layer 26.9 11.4 12.1 23.0 9.8 10.4 19.4 8.1 8.9 16.2 6.6 7.5 13.2 5.3 6.2	e fit to the data is measurement to back layer 2.3 2.8 2.5 2.2 1.8	μ値は0.049cm ⁻¹ (250-650keV)、 0.153cm ⁻¹ (450-650keV)であった. μ理論値(0.229cm ⁻¹ at 511keV)と の相違はscattered eventによりカ ウント数が増えたためと思われる. Buildup factorはshieldの増加に伴 い増加した.

	N		122				
	11.2.2 Line Source Measurement						
	Table 11.5: µ-value	s (line source measureme	at)				
	Energy Window [keV]	uncorrected scatter co-	rrected				
See Hi	250-650	0.049 0.24	0	Scatter補正を行うと、μ値は理論			
Sate 1	350-650	0.074 0.23	3	値とほぼ一致した。			
	400-650	0.124 0.21	8				
14183	460-660	0.153 0.22	<u> </u>	エネルギーウィンドウ450-650ke\/			
				では point sourceと line sourceの			
				sensitivityの比は2.23であった。			
Table	e 11.6: Comparison of sensit	tivity measurements (ps =) Vinders [keV] Sensitivity	point source, ls = line source)				
	Earty	(ps/b)				
14	2 3	50-650 2.63 00-650 2.51					
	3	90-650 2.40					
	4	2234 50-650 2.23					
No. 1							
265							
Test							

	C STOR
11.5 Scatter	
Table 11.8: Scatter fractions (SF) for the NEMA 1994 measurement (ULD 650 keV] $ \frac{ LU }{ LU } = \frac{SF_{wv}}{SF_{wv}} = \frac{SF_{Down}}{SF_{00}} $ $ \frac{ LV }{ 201 Leves front Lever} = \frac{1}{200} = 0.54 = 0.63$ $300 = 0.58 = 0.58 = 0.64$ $300 = 0.45 = 0.45 = 0.51$ $400 = 0.45 = 0.45 = 0.51$	NEMA NU 2-1994 Scatter Phantom > エネルギーウィンドウが250-650keV では62%だったScatter fractionsが 450-650keVでは35%に減少した.臨 床で使われている350-650keVでは 52%であった.
L20 0.35 0.34 0.40 Table 11.9: Scatter fractions (SF) for the improved NEMA 2001 measurement (ULD 500keV) LLD SF [keV] NEMA improved NEMA 300 $-$ 0.56 0.56 450 $-$ 0.51 $-$	NEMA NU 2-2001 Scatter Phantom (700mm NEMA Phantom) > エネルギーウィンドウ350-650keVで は、scatter fractionは56%であった. Improved 700mm NEMA Phantom Measurement > 測定値は200mm diameter water phantomとほぼ同じ.